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1 Introduction

The interdependence of communication and control
functions in practical networks is obvious. The two
functions are closely and intimately intertwined. Since
communication services are required for control it fol-

lows that communications constraints will a�ect the
acheivable performance of a controlled system. Con-
versely, it is possible to interpret communication al-
gorithms as essentially the control of communication
channels and infrastructure. Despite their close func-
tional connection, research in these two �elds has pro-
ceeded relatively independently. Traditional control re-
search, for example, rarely assumes less than perfect
communication, and much research in communications
proceeds without reference to the control function of
the information that is being communicated.

The practical utility of a theoretical understanding of
the relationship between control and communications is
obvious in the context of designing e�ective C3I (Com-
mond, Control, Communications and Intelligence) Sys-
tems for organisational management. Under a broad
interpretation of a \control function" as \making deci-
sions regarding what actions to undertake on the ba-
sis of observation and measurement", the value of any
communicated information is a function only of how it
contributes to the improvement of the controlled out-
come.

The design (and control) of a communications network
is a tradeo� between varying levels of service between
nodes, constrained by resources such as available chan-
nel capacity and other items of communication infras-
tructure. The value of information in terms of achiev-
able control performance is a desirable parameter on
which to base rational decisions regarding the alloca-
tion of such communications resources. One way to
determine the value of such control information is to
perform optimisation on various criteria under a va-
riety of communication constraint limitations in order
to observe how controller performance degrades under

such constraints.

Despite the relative lack of research concerned with
communication for control, there are a number of ex-
ceptions which address the control problem with com-
munications constraints. The problem of stabilising an
unstable system under data rate constraints is dealt
with for example in [5], [8] and [9]. The conclusion is
that there exists a particular data rate threshold above
which stabilisation of a linear unstable system is pos-
sible, and below which it is impossible. The data rate
threshold is a function of time-constant of the fastest
unstable pole of the open loop unstable system. The
LQG problem with communication constraints is dealt
with in [1], [7], and [6]. Others [4] have looked at meth-
ods of optimally coding linear system transfer functions
under �nite data storage limits.

The presentation for the ARO conference will address
a problem from a similar perspective: that of a tra-
ditional control problem, modi�ed by the addition of
communications constraints. It will be certainly a long
way from a unifying theory of communications and con-
trol, but it is hoped that the insights obtained will
contribute towards such a goal. The problem to be
addressed here is that of the optimal control of a dy-
namic system with some constraints on the data rate.

Classical control goals of optimal control will be consid-
ered: namely the LQG and H1 cost criteria. Although
the communication limited optimal LQG problem has
already been solved [1], [7], we present an alternative
perspective from which to view the problem which al-
lows the same framework to be employed for solving the
optimalH1 problem. This is motivated by a particular
observation that the optimal coding of observations y
for the purposes of a speci�ed optimal control function
is equivalent to the problem of optimal coding of the
control input u. Rigourous explanation of this claim
will necessitate the introduction of some mathematical
notation.

2 Mathematical Preliminaries

� A plant G is modelled as an operator from input
space to output space as G : [u;w]! [z; y] where
w 2 W are exogenous signals, u 2 U is a control
signal which is able to be manipulated, z 2 Z
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is an output variable of interest in determining
closed loop performance and y 2 Y is available
for measurement.

� A �nite information space Ik of index k is a set
with a �nite number of elements ci for 1 � i � f .
Each element ci in a �nite information space may
be interpreted as a codeword.

� A codebook C is a function C : x ! ci where
x 2 X is the message and ci 2 If is the coded

message. In general, a codebook is many-to-one,
often mapping an in�nite message space to the
�nite information space.

� A decoder D is a function D : ci ! x from ci in
a �nite information space If to some element x
of an output space X .

� A controller K : y ! u maps observations y 2 Y
to control inputs u 2 U .

� The composition of a plant G and controller K
results in a closed loop map T : w ! z from
w 2 W to z 2 Z.

� A closed loop objective function is a functional
J : T ! R from a closed loop transfer function
to a real objective value.

� A discrete time vector sequence z1 2 Z�Rn is
a sequence of vectors zk 2 R

n for 0 � k � 1.

� A partial discrete time vector sequence zK 2

IK � R
n up to time K is a sequence of vectors

zk 2 R
n for 0 � k � K.

� A time limited observation operator OK : Z �
R
n ! IK �R

n is de�ned in the obvious way by
(OKz)k = zk for k � K.

Proposition 2.1 Assume that we are given a system

G : [u;w]! [z; y]. For simplicitity, we take the input

and output spaces U = Z � Rm
, W = Z � Rr

, Z =
Z �Rq

, Y = Z �Rp
to be discrete time sequences of

vector signals. We are also given an objective function

J and a communication constraint in terms of bit rate

per sample limit b 2 Z.

We are required to �nd a set of observation point code

books Cyk : Ik�R
p ! I2b which de�nes an observation

sequence code book Cy : Z�R
p ! Z�I2b in the obvious

way by (Cyy)k = CykOky and a codebook controller

�K : Z�I2b ! U , such the e�ective controllerK = �KCy

optimises the objective function J .

This is equivalent to the problem of �nding a con-

troller K̂ : Y ! U , a set of control point code books

Cuk : Ik � R
m ! I2b which de�nes a control se-

quence code book Cu : Z � Rm ! Z � I2b in the

obvious way by (Cuu)k = CukOku and a sequence of

decoders Duk : I2b ! R
m

which de�nes a sequence

decoder Du : Z � I2b ! Z � Rm
in the obvious way

by (Duu)k = Dukuk, such that the e�ective controller

K = DuCuK̂ optimises the objective function J .

Proof: It is fairly easy to show that for every �K and
Cy there exists a K, Du and Cu such that DuCuK̂ =
�KCy. The converse also holds.

Although the proposition statement and proof are tech-
nically trivial, the insight that is provided is not.
Rather than designing a optimal combination of cod-
ing scheme for the measured output y and controller for
the coded measurements, a conceptually simpler, but
mathematically equivalent problem is to design an op-
timal combination of controller for observed measure-
ments and encoder for controlled inputs u. Further-
more, if the objective function J obeys a particularly
simple convexity property, it follows that the optimal
controller for the observed measurements can be de-
signed independently of the code book. This is for-
malised in the following proposition.

Proposition 2.2 Assume that the plant G admits

an internal state representation, that is, it can be

factorised as G = FH, where H : U � W !

X = Z � R
n

and F : X ! Y,. Assume

also that the objective function can be expressed as

J =
P
1

k=1L(xk; uk) with an associated value function

Vk(xk) = optu
P
1

i=k L(xi; ui). If this value function is

convex with respect to u, that is, provided that

�[L(xk; uk(a)) + Vk+1(xk+1)]

+(1� �)[L(xk; uk(b)) + Vk+1(xk+1)]

� L(xk; �uk(a) + (1� �)uk(b)) + Vk+1(xk+1);

then the problem described in Proposition 2.1 may be

solved as a combination of the unconstrained optimal

control problem to �nd K̂ : Y ! U and the optimal

coding problem to �nd DuCu : U ! U which minimises

the distortion in u.

The optimal communication limited control problem
thus reduces, in these special convex cases, to an inde-
pendent optimal controller design and optimal quanti-
sation problem of the sort dealt with in [3]. Applying
the above proposition to the classical LQG problem we
recover the solution in [7]. Because the value function
of the classical H1 problem also enjoys the convex-
ity property condition required in Proposition 2.2, it is
also possible to use this fact to solve the communication
limited H1 problem.

At present only numerical solutions to the general opti-
mal quantisation problem exist [3], however, these are
suÆcient to obtain upper and lower bounds on the in-
creased cost to optimal control if there are added band-
width constraints on communication.
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3 Conclusion

The main contribution is the observation that the op-
timal observation coding for optimal control problem
may be recast as an optimal control plus optimal con-
trol coding problem to solve a classical optimal control
problem with communication constraints. If the value
function for the classical optimal control problem en-
joys a particular convexity property with respect to the
control signal, then the combined optimal control and
coding problems may be solved independently. This
suggests that when communication limitations are an
in issue, the design of an appropriate set of allowable
discrete controls on which to base a hybrid controller
analysis and design as in [2] can be viewed from a per-
spective as an optimal coding problem.

In this sense, we make a small contribution to an infor-
mation theoretic interpretation of the control problem,
but there are some other obvious questions for future
research. It is well known that the existence of noise
can imply certain limitations in terms of rate of infor-
mation transfer over a communication channel. On the
other hand, measurement noise is also explicitly dealt
with in the classical LQG and H1 formulations. It re-
mains to be determined whether there is a simple link
between the degradation in the controlled performance
caused by communication bandwidth limits induced by
noise and the degradation directly attributable to the
noise itself in the classical formulations. Other issues
to be investigated relate to the information content in a
bandwidth limited continuous time rather than a dis-
crete time signal and to show whether the Shannon
channel capacity and Nyquist sampling theorems can
be used to lend insight into the continuous time case.
Finally there is also the issue of the extent to which
performance might be improved by conditioning con-
trol on the decoding of a partially observed codeword

sequence, instead of waiting until the entire codeword
has been received before performing the decoding.
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